The occipital place area is causally and selectively involved in scene perception.
نویسندگان
چکیده
Functional magnetic resonance imaging has revealed a set of regions selectively engaged in visual scene processing: the parahippocampal place area (PPA), the retrosplenial complex (RSC), and a region around the transverse occipital sulcus (previously known as "TOS"), here renamed the "occipital place area" (OPA). Are these regions not only preferentially activated by, but also causally involved in scene perception? Although past neuropsychological data imply a causal role in scene processing for PPA and RSC, no such evidence exists for OPA. Thus, to test the causal role of OPA in human adults, we delivered transcranial magnetic stimulation (TMS) to the right OPA (rOPA) or the nearby face-selective right occipital face area (rOFA) while participants performed fine-grained perceptual discrimination tasks on scenes or faces. TMS over rOPA impaired discrimination of scenes but not faces, while TMS over rOFA impaired discrimination of faces but not scenes. In a second experiment, we delivered TMS to rOPA, or the object-selective right lateral occipital complex (rLOC), while participants performed categorization tasks involving scenes and objects. TMS over rOPA impaired categorization accuracy of scenes but not objects, while TMS over rLOC impaired categorization accuracy of objects but not scenes. These findings provide the first evidence that OPA is causally involved in scene processing, and further show that this causal role is selective for scene perception. Our findings illuminate the functional architecture of the scene perception system, and also argue against the "distributed coding" view in which each category-selective region participates in the representation of all objects.
منابع مشابه
The Occipital Place Area Is Causally Involved in Representing Environmental Boundaries during Navigation
Thirty years of research suggests that environmental boundaries-e.g., the walls of an experimental chamber or room-exert powerful influence on navigational behavior, often to the exclusion of other cues [1-9]. Consistent with this behavioral work, neurons in brain structures that instantiate spatial memory often exhibit firing fields that are strongly controlled by environmental boundaries [10-...
متن کاملPinpointing the peripheral bias in neural scene-processing networks during natural viewing.
Peripherally presented stimuli evoke stronger activity in scene-processing regions than foveally presented stimuli, suggesting that scene understanding is driven largely by peripheral information. We used functional MRI to investigate whether functional connectivity evoked during natural perception of audiovisual movies reflects this peripheral bias. For each scene-sensitive region--the parahip...
متن کاملTMS to the Lateral Occipital Cortex Disrupts Object Processing but Facilitates Scene Processing
The study of brain-damaged patients and advancements in neuroimaging have lead to the discovery of discrete brain regions that process visual image categories, such as objects and scenes. However, how these visual image categories interact remains unclear. For example, is scene perception simply an extension of object perception, or can global scene "gist" be processed independently of its comp...
متن کاملThe causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception.
Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA...
متن کاملThe Role of Transverse Occipital Sulcus in Scene Perception and Its Relationship to Object Individuation in Inferior Intraparietal Sulcus
The parietal cortex has been functionally divided into various subregions; however, very little is known about how these areas relate to each other. Two such regions are the transverse occipital sulcus (TOS) scene area and inferior intraparietal sulcus (IPS). TOS exhibits similar activation patterns to the scene selective parahippocampal place area, suggesting its role in scene perception. Infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2013